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A model Vlasov-Poisson system is simulated close to the point of marginal stability, thus assuming only the
wave-particle resonant interactions are responsible for saturation, and shown to obey the power-law scaling of
a second-order phase transition. The set of critical exponents analogous to those of the Ising universality class
is calculated and shown to obey the Widom and Rushbrooke scaling and Josephson’s hyperscaling relations at
the formal dimensionalityd=5 below the critical point at nonzero order parameter. However, the two-point
correlation function does not correspond to the propagator of Euclidean quantum field theory, which is the
Gaussian model for the Ising universality class. Instead, it corresponds to the propagator for the fermionic
vector field and to the upper critical dimensionalitydc=2. This suggests criticality of collisionless Vlasov-
Poisson systems corresponds to a universality class analogous to that of critical phenomena of a fermionic
quantum field description.

DOI: 10.1103/PhysRevE.71.056406 PACS numberssd: 52.35.Mw, 05.30.Fk, 05.70.Fh, 64.60.Fr

I. INTRODUCTION

The remarkable property of critical phenomena is the uni-
versal scaling appearing in a vast variety of systems; e.g.,
magnets and gases follow simple power laws for the order
parameter, specific heat capacity, susceptibility, compress-
ibility, etc. f1g. In thermodynamic systems, phase transitions
take place at a critical temperatureTcr when the coefficients
that characterize the linear response of the system to external
perturbationsdiverge. Then, long-range order appears, caus-
ing a transition to a new phase due to collective behavior of
the entire systemf2g.

The condition for nonlinear saturation in the test case of
the bump-on-tail instability in plasmasf3g is

vb < 3.2gL, s1d

f4,5g, wheregL is the linear growth rate of a weakly unstable
Langmuir wave according to the Landau theoryf6g, andvb
=seEk/md1/2 is the frequency of oscillations for particles
trapped by the wave. These trapped particles generate a long-
range order of the wavelengthk, the saturated amplitudeE
can be considered as the order parameter, and the condition
of saturation can be rewritten as a power law, typical for the
second-order phase transitions,E,gL

b.
However, unlike thermodynamics this scaling contains the

nonthermal control parametergL, which is determined by the
slope of the distribution function]f0/]v at the phase speed
vr =vpe/k of the perturbation near the electron plasma fre-
quency vpe. fFor thermodynamic systems like magnets,
for which the magnetizationM below the Curie pointTcr

is the order parameter, the scaling isM ~eb, where
e=sTcr−Td /Tcr at T,Tcr.g Another difference is the critical
exponent itself—relations1d predicts the very unusual expo-
nent b=2; in contrast, the hydrodynamic Hopf bifurcation

f7g, also described by the same scaling between the saturated
amplitude and the growth rate, has the mean-field critical
exponentb=1/2.

An analysis f8g assuming thermalization in a Vlasov-
Poisson plasma or gravitating system leads to a critical ex-
ponentb,1, and the exponentb=1/2 hasalso been hypoth-
esized for the bump-on-tail instability in Ref.f9g. However,
detailed center-manifold analysis, which establishes the nor-
mal form for a weakly unstable perturbation in a one-
component collisionless Vlasov-Poisson system, confirmsb
=2 f10g. The exponentb=2 is also confirmed numerically
f11,12g.

The striking discrepancy between these exponents can be
better understood if we consider the structure of the phase
space corresponding to these cases. The exponentsb=1/2
f7g andb,1 f8g correspond either to saturation of a strongly
dissipative instability or to a thermalized system. In both
these cases the distribution function can be factorized as
fsq,pd=ysqdgspd, wheregspd can be assumed to be Gauss-
ian, and the system is described by its momenta. The expo-
nent b=2 corresponds to saturation due to nonlinear wave-
particle interactions in a weakly unstablecollisionless
system, where correlations between coordinates and im-
pulses are not destroyed by dissipative processes, so the de-
scription cannot be reduced to moments of the distribution.

More formally, a dissipative and/or thermalized system is
represented by adiscreteset of momenta of the distribution
function fsx,v ,td, which depends only on the coordinatex,
but not on the velocityv, M =hr , v̄ ,Tj, wherer, v̄, andT are
the local density, the velocity, and the temperature, respec-
tively. The evolution is a flowgt which mapsM onto itself,
gt: M→M. In fact, in a neighborhood of the thresholdgL
=0 the evolutiongt: M→M can be reduced to a normal
form, which maps only the order parameter,gt8: n→n, where
n=R0 sor C0, whereC is the set of complex numbersd, and
therefore the evolution is atrajectory n=nstd, or in other
words the setY=R+3R0. The phase space of a one-
dimensional collisionless system is acontinuousset H=R
3R and evolution can be represented as the flowwt:*Electronic address: ivanov@physics.usyd.edu.au
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H→H. sFor periodic boundary conditions the phase space is
isomorphic to a cylinderC=T3R, whereT is isomorphic to
a circle.d The setsn andH sor Cd have differentdimension-
ality, and therefore renormalization of collisionless system in
a vicinity of threshold—i.e., transformation of the setH and
the mappingwt—involves one or more additional dimension.
Further, it is shown below that scaling transformations close
to the threshold are inter-related with the additional velocity
coordinate, which disappears in hydrodynamic description
because of integration of the distribution functionfsx,v ,td
over v.

From the theory of critical phenomena it is known that
dimensionality d is an inseparable part of the threshold
description—along with the critical exponentsse.g., Ref.
f13gd. Besidesb, other critical exponents:a, g, d, n, andh,
describe the following scalings of the Ising universality
class:

sid the specific heat capacity scales as

C =
dQ

dT
~ ueu−a; s2d

sii d the susceptibility as

x = S ]M

]B
D

B→0
~ ueu−g; s3d

siii d the responseM at e=0 as

M ~ B1/d; s4d

sivd the correlation length as

j , ueu−n; and s5d

svd the two-point correlation function as

Gsrd ,
e−r/j

rd−2+h . s6d

These exponents are not independent, but are inter-related
via scaling laws, e.g., the Widom equality

g = bsd − 1d s7d

f14g. These scaling laws also includehyperscalinglaws such
as Josephson’s law

nd = 2 −a s8d

f15g, which involves the dimensionalityd along with the
exponents.

For thermodynamics the mean-field exponents are of the
Landau-Weiss set,a=0, b=1/2, g=1, d=3, n=1/2, andh
=0, and the scaling laws hold at the formal dimensionality
d=4. However, the possibilities of critical phenomena are
not exhausted by the Ising universality class—the percola-
tion critical exponentsf16g, which describe another vast
class of critical phenomena, are different from those in ther-
modynamics, and scaling laws hold at a different dimension-
ality. In particular, for the Bethe latticesor Cayley treed f17g
Josephson’s law holds at dimensionalityd=6. Despite the
description being the same, this difference separates the
cases into differentuniversality classeswith different upper

critical dimensions: dc=4 for the Ising universality classf18g
andd=6 for percolation.

For a collisionless gravitating system, where the satura-
tion mechanism is the same as for the bump-on-tail instabil-
ity in plasmas, the critical exponentb=1.907±0.006, and the
critical exponentsg=1.075±0.05,d=1.544±0.002 can be
determined analogously to thermodynamics and calculated
from the response to an external pumpf19g. These exponents
are very different from the thermodynamic set, but neverthe-
less satisfy the Widom equality, thus suggesting the validity
of scaling laws. Josephson’s law also holds, but at a rather
surprising dimensionality which is the fractal one,d<4.68
f19g. At the same time, the processes resulting inb<1.9
differ qualitatively from those resulting inb=2, similar to
thermodynamics where spatial fluctuations of the order pa-
rameter, neglected in mean-field theories, result inb<0.33,
therefore suggesting other universality classes were not com-
pletely ruled out. These could be the wave-wave interactions,
responsible for the strong turbulence in plasmaf20gd, which
are next in dynamical importance and have fewer degrees of
freedomf21g.

In this paper, we use numerical simulations to study the
threshold scalings in a weakly unstable collisionless Vlasov-
Poisson system. Depending on the sign of the Poisson equa-
tion, this set of equations describes either a plasma system or
a gravitating system. The saturation mechanism in a colli-
sionless gravitating system is the same as for the bump-on-
tail instability in plasmas, and threshold corresponds to the
condition gL=0 in both cases. We show in Sec. II that the
eigenfrequency contains only an imaginary part, and there-
fore is the simplest model to study the threshold. Section III
describes the results of computations of the critical expo-
nents and demonstrates that the scaling laws describing satu-
ration are the same for plasma and gravitation. Section IV
addresses the scaling transformations of the phase space and
the scaling law, which appears as a result of this symmetry.
The exponent which describes correlations are obtained in
Sec. V, where Fisher’s equalityg=ns2−hd is also proved. In
Sec. VI we show that the criticality in the system is de-
scribed by the Dirac propagator for a fermionic field. We
obtain hyperscaling laws and calculate upper critical dimen-
sionalities in Sec. VII.

II. BASIC EQUATIONS

The eigenfrequencies and eigenvectors of oscillations in a
Vlasov-Poisson system are given by the dispersion relation

«fvskd,kg = 0, s9d

where « is the permittivity sdielectric permittivity in the
plasma cased. The boundary between stable and unstable
cases is determined by the condition

Imf«sv,kdg = 0 s10d

f22g. For the bump-on-tail instability conditions10d simpli-
fies togL; Imsvd=0, and criticality is related to the zero of
the imaginary part of the eigenfrequency. Therefore, we can
employ a model which does not contain the real part; i.e.,
Resvd=0. The simplest is the one-dimensional self-
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gravitating Vlasov-Poisson model, which is described by the
equations

]f

]t
+ v

]f

]x
−

]F

]x

]f

]v
= 0, s11d

]2F

]x2 =E
−`

`

fsx,v,tddv − 1, s12d

where fsx,v ,td is the distribution function, andF is the
gravitational potential. Boundary conditions are assumed to
be periodic in thex direction and all quantities are dimen-
sionless.

Equationss11d ands12d describe the mean-field evolution
of a self-gravitating model immersed in a homogeneous re-
pulsive background. Analogous repulsion terms appear in
some cosmological simulationsf23g as a result of the expan-
sion of the universe. Models of rotating stellar systems like
disk galaxies provide other examples—“repulsion” appears
as a result of the centrifugal force in the local rest frame
se.g., Ref.f24gd. The systems11d and s12d could thus be
considered as an idealized model of the galactic corotation
region where a nonaxisymmetric perturbation is responsible
for visible spiral structure, and stars orbit with the same an-
gular speedse.g., Ref.f25gd, and only angular motions are
allowed.

For the eigenfunctions

X = o
m=−`

`

Xm expsikmxd, s13d

where

X = ffsx,v,td,Fsx,tdgT, s14d

Xm = ffmsv,td,FmstdgT, s15d

are the spatial Fourier components, the superscriptT stands
for transpose,km=2pm/L is the wave vector, andL is the
system length, we find

ḟm + ikmvfm + i o
m=m8+m9

1

km8
E

−`

`

fm8dv
]fm9

]v
= 0, s16d

or, explicitly for the componentsm=h0,1,2j and forL=2p

ḟ0 + i
]

]v
sr1f−1 − r−1f1d = 0, s17d

ḟ1 + ivf1 + i
]

]v
Sr1f0 +

1

2
r2f−1 − r−1f2D = 0, s18d

ḟ2 + i2vf2 + i
]

]v
S1

2
r2f0 + r1f1D = 0, s19d

where

rmstd =E
−`

`

fmsv,tddv, s20d

is the Fourier component of density, andf−1= f1
* .

For a Maxwellian distribution

f0svd =
1

Î2ps
expS−

v2

2s2D , s21d

the dispersion relation is

1 +
1

2

sJ
2smd
s2 UdZszd

dz
U

z=zm

= 0, s22d

whereZ is the plasma dispersion functionf26g, zm=zm/Î2,
zm=vm/ skmsd, ands is velocity dispersion. In Eq.s22d

sJ
2smd =

1

km
2 ;

1

m2 , s23d

is the criticalsJeansd velocity dispersion for the modem, and
r0 is the background density. For smalluzu!1 fi.e.,
s2/sJ

2smd!1g, the dispersion relation reads

«svm,kmd = 1 −
sm

2

s2S1 + iÎp

2

vm

kms
D = 0, s24d

or

vm = − iÎ 2

p
kmsFs2 − sJ

2smd
sJ

2smd G , s25d

which is remarkably simpler than in the plasma case, where
the bump-on-tail instability and Landau damping appear due
to the wave-particle resonance at the phase velocity of the
wave vph=vpe/k. The frequency spectrum in the case of
gravitation does not contain a real part, so the resonance
occurs atv=0; i.e., in the main body of the particle distribu-
tion. For all m, sJ

2smd.sJ
2sm+1d; thus, if we writesJ

2s1d
;scr

2 , the distance from the instability threshold is

u =
s2 − scr

2

scr
2 , s26d

analogously toe=sT−Tcrd /Tcr. Using s25d and s26d, the lin-
ear damping or growth rategL can be written as

gL ; Imsv1d = −Î 2

p
u. s27d

Time is measured in units of the inverse ofugLu, t8= tugLu.

III. RESULTS

Dispersion relations25d shows that there are no unstable
modes above the thresholdscr

2 , s2.scr
2 , and therefore the

system remains invariant with respect to translationsx8→x
+t, wheret is any number. Below the threshold the mode
m=1 becomes unstable, and therefore thecontinuoussym-
metry breaks and reduces to a lowerdiscreteone with re-
spect to translationsx8→x+L. Therefore,scr

2 can be consid-
ered as the critical point of a second-order phase transition,
and the amplitude of the modem=1 as the order
parameter—following the definition of Landauf2g.

A. Order parameter scaling

Equationss11d and s12d with initial distribution
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fsx,v,0d = f0svdf1 + A0 cossk1xdg, s28d

were integrated numerically using the Cheng-Knorr method
f27g. The amplitudesAmstd= urmstdu for m=1,2,3,4 are
shown in Fig. 1. The perturbationm=1 grows exponentially
with the growth rate predicted by dispersion relations25d.
Then, the growth saturates at some momentt= tsat at the am-
plitude Asat=A1stsatd.

Figure 1 also shows thesexponentiald growth of perturba-
tions with m.1, while s25d predicts exponential damping
for these modes. This growth occurs because of nonlinear
coupling between modes in Eq.s16d. For instance, since the
term r1f1 dominates over the termr2f0 in Eq. s19d initially,
when f2! f1 and therefore for the modem=2, one hasg2
=2v1 for the growth rateg2.

Figure 2 shows thatAsat is independent ofA0 for smallA0,
but there exists some threshold value of the initial perturba-
tion A0 when it becomes dependent onA0. This threshold
amplitude Athr corresponds to the trapping frequencyvb

=ÎAthr<v1. At vb<v1 the processes due to trapping be-
come as important as the resonance between wave and par-
ticles responsible for the linear Landau dampingsor growthd
in collisionless media. Therefore, to rule out the influence of
trapping processes on linear growth the amplitudeA0 must
be small to provide

vb ! v1. s29d

The distribution functionfsx,v ,td is plotted in Fig. 3 as a
surface at the momentt= tsat. Note that the distribution func-
tion fsx,v ,td becomes flat in the part of thex-v domain

v2

2
+ Asatcossk1xd ø Asat s30d

separatrix, as predicted for the bump-on-tail instability
f28,29g. Outside this area the Fourier componentf1sv ,td re-
mains modulated by the background Maxwellian distribution
as assumed att=0, and the components withm.1 remain
negligible f19g, so the dynamically important area lies atv
ø uvsepu, wherevsep= ±2ÎAsat. The width of the dynamically
important area must be small compared tos at maximum
amplitudesi.e., Asat, vsep!sd, otherwise the background dis-
tribution will be altered by evolution.

Assuming the above two criteria,Asat is calculated as a
function of u and plotted in Fig. 4. From Fig. 4 we see that
this dependence can be approximated by the power law

Asat~ s− udb, s31d

while b=1.9950±0.0034 foruø0. Rewritten in terms of the
bounce frequencyvb and the linear growth rategL, the
power laws31d becomes

FIG. 1. Amplitudes of the first four harmonics,m=1,2,3,4, at
u=−0.04. Quantities are dimensionless.

FIG. 2. The saturated amplitudeAsat vs A0 for u=−0.05. Circles
are calculated values, the curve is a spline approximation. Quanti-
ties are dimensionless.

FIG. 3. Distribution functionssurfaced and its isocontoursslines
in thex-v planed in configuration space at the moment of saturation
t= tsat. Quantities are dimensionless.

FIG. 4. Amplitude Asat as a function ofu. Circles represent
calculated data; the dashed line is the power-law best fit. Quantities
are dimensionless.
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vb = cgL, s32d

and the coefficientc=3.22±0.01. These values are almost
identical tob=2, and to the coefficient 3.2 in relations1d as
predicted and calculated for the bump-on-tail instability
f10,12,29g.

B. Response scaling

Subjecting the system to an external pump of the form
Fsxd=Fm cosskmx+wd allows one to calculate the other two
critical exponents,g and d, which describe the response
properties. The indexg describes the divergence of the sus-
ceptibility, which can be written as

xsud = U ]Asatsud
]F1

U
F1→0

, s33d

for m=1. The results are shown by trianglessu,0d and
circles su.0d in Fig. 5.

Computation ofx at someu requires at least five values of
Asat corresponding to the givenF1. At the same time,F1 must
be small enough to avoid the effects ofAsat depending non-
linearly onF1. Again, it requires extensive calculation of all
quantities to high accuracy. In both casesxsud is approxi-
mated by

x± ~ uuu−g±, s34d

and g−=1.028±0.025 foru,0, g+=1.033±0.016 foru.0,
giving g−<g+=g<1. These exponents are very close to the
corresponding results for Ref.f19g, becausex is the only
linear coefficient, and this is common to both wave-particle
and wave-wave interactions.

The exponentg is the same as for the mean-field thermo-
dynamic models but, opposite to thermodynamics, the re-
sponse isstrongerat u,0 than atu.0, as Fig. 5 shows. The
susceptibilities are

x− < 2x+. s35d

This difference, as well as the appearance of scalings1d and
s32d with b=2 instead ofb=1/2, can beexplained if one
takes into account the difference between the Landau-
Ginzburg Hamiltonian

HLG =
k2

2
u ¹ fu2 +

m2

2
ufu2 +

l

4!
sufu2d2, s36d

fwhere f is the order parameter andm2,sT−Tcrd /Tcrg,
which describes the Ising universality class, and the equation

ẏ = yFgL −
1

4gL
3y2 + Osy4dG , s37d

which describes the amplitude of a weakly unstable pertur-
bation in a one-species Vlasov-Poisson systemf10g. Accord-
ing to s37d the maximum amplitudeysat at ẏ=0 scales with
gL asysat=gL

2.
On the assumption that the system responds linearly to an

external pump]F, one can obtain the response]ysat to ]F as

gL]ysat−
3ysat

2

4gL
3 ]ysat+ ]F = 0. s38d

However, Eq.s37d is not valid at gL,0 since it predicts
unlimited growth instead of damping in this case. At small
initial perturbationy0 the correct evolution is given by the
linear equationẏ=gLy, and the susceptibility

xsgLd =
]ysat

]F
, s39d

is

x+ = s− gLd−1, s40d

and atgL.0

x− = 2gL
−1. s41d

At the critical pointu=0 sor gL=0d the response is de-
scribed by another critical exponentd

Asat~ F1
1/d. s42d

The results of simulation are plotted in Fig. 6, givingd
=1.503±0.005. This exponent cannot be obtained by the pre-
vious simple assumption froms37d because of its singularity
at gL=0.

IV. SCALING LAWS AND SYMMETRIES OF THE MODEL

The remarkable property of the critical exponentsg, b,
and d is that they satisfy the Widom equalitys7d f14g with

FIG. 5. Plot of x vs uuu. Circles su.0d and trianglessu,0d
represent numerical data; the dashed lines are the power-law best
fits. Quantities are dimensionless.

FIG. 6. Asat as a function ofF1. Circles represent numerical
data; the dashed lines are the power-law best fit. Quantities are
dimensionless.
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high accuracy. In thermodynamics the Widom equality is a
consequence of the scaling of the Gibbs free energy under
the transformation

Gslaee,laBBd = lGse,Bd, s43d

from which it can be derived straightforwardlyf1g. The func-
tions which comply with the conditions43d are calledgen-
eralized homogeneous functions, and the condition itself is
termed ahomogeneitycondition.

The nature of this scaling for the marginally stable
Vlasov-Poisson system is clear from Fig. 3, where the distri-
bution functionfsx,v ,td is plotted at the momentt= tsat. The
remarkable property of the critical dynamics is the topologi-
cal equivalence of the phase portraits for differentu: at the
moments of saturationt1 and t2 corresponding tou1 andu2,
we can write

fsx,lavv,u1,t1d = lfsx,v,u2,t2d, s44d

or

fmslavv,u1,t1d = lfmsv,u2,t2d, s45d

for the Fourier component. Transformation betweent1, u1
and t2, u2 can be written ast8→latt, u8→lauu, so

fmslatt,lavv,lauud = lfmst,v,ud. s46d

A weak external pump in the formFsxd=F1 cossk1x+wd
creates a similar topology in the phase space because of the
same mechanism of the saturation, and adds an additional
variable to the distribution function. The transformation can
be written asF18→laF1F1. Finally, for fm= fmst ,v ,u ,F1d we
can write the homogeneity condition as

fmslatt,lavv,lauu,laF1F1d = lfmst,v,u,F1d. s47d

The critical exponentsb, g, and d can be expressed via
the scaling exponentsav, au, andaF1

from which the Widom
equality for the Vlasov-Poisson system can be proved di-
rectly sAppendix Ad. They also provide a deep insight into
symmetry properties of the system. According to expression
sA4d

b =
1 + av

au

,

rescaling the parameter ofu sor growth rated also rescales the
distribution functionfst ,v ,xd in the v direction. This situa-
tion differs significantly from thermodynamics, where

b =
1 − aB

ae

. s48d

This expression rescales the normalized distance from the
critical point with external fieldB.

SubstitutingAsat according to the power laws31d for the
order parameter tovsep

2 =4Asat~ s−udb, one can obtainsas-
sumingav=1d

vsep~ s− ud1/au, s49d

from which the scaling exponent isau=1 for b=2 sau=4 for
b=1/2d. Remarkably, the two different processes—the linear

growth of an unstable perturbation due to the resonant wave-
particle interaction and the subsequent nonlinear saturation
of this process due to particle trapping—are inter-related.

While there is no thermodynamic equilibrium in the col-
lisionless system considered here, one can define the quantity
which describes the response of the system to external ther-
mal perturbation, just as the specific heat capacity describes
the response of a thermodynamic system to heat transfer,C
=dQ/dT. For the case considered here

C =
dQ

du
;

dV

du
, s50d

whereV is the potential energy of the system. To calculate
the specific heat capacity,Vsat corresponding toAsat is used.
The critical exponenta can be calculated straightforwardly
from s50d and s31d. Because perturbationsm.1 are negli-
gible for uuu!1, Vsat~AsatFsat, whereFsat=−Asat; i.e., Vsat
~−s−ud2b, u,0, and the heat capacity is given by

C ~ − s− ud−a, s51d

where

a = − s2b − 1d. s52d

The scaling laws52d can be proven using the homogeneity
condition s47d sAppendix Ad. The critical exponenta does
not depend on the sign of Poisson’s equation, and the result
is the same for the plasma case.

Unlike thermodynamics, where the relation between ex-
ponentsb, g, and a is given by Rushbrooke’s equality,a
+2b+g=2, the scaling laws52d does not contain the critical
exponent g. Nevertheless, the set of critical exponents
a=−2.990±0.006, b=1.995±0.003, andg=1.031±0.021
satisfy Rushbrooke’s equality with high accuracy.

V. CORRELATION EXPONENTS

The correlation function of fluctuations for the field

E = −
]F

]x
, s53d

can be found from the fluctuation-dissipation theoremf31g as

kE2lvk =
T

2pv

Imf«sv,kdg
u«u2

, s54d

f32g, where the permittivity« is given bys24d. Relations54d
can be integrated using the Kramers-Kronig dispersion rela-
tions, and in the static limitv→0 s54d becomes

kE2lkm
=

4ps2

mpkB
F1 −

1

«s0,kmdG , s55d

wherekB is the Boltzmann constant andmp is the particle
mass. This equation can be rewritten as

kE2lkm
= −

4p

mpkB

s2

um
, s56d

where
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um =
s2 − sJ

2smd
sJ

2smd
. s57d

The susceptibilityx can be written in terms ofkE2lk1
as

x = kE2lk1
~ u−g, s58d

g=1. The combination ofs and v1 gives the characteristic
length for the system from the dispersion relations25d

j = 2p
s

v1
, s59d

or, in terms ofu

j ~ u−n, s60d

as u→0. Therefore, the critical exponent that characterizes
the correlation length isn=1. The correlation functionkE2lk1
can be rewritten in terms ofkj=j−1 as

kE2lk1
~ kj

2−h, s61d

whereh is another critical exponent which characterizes the
correlation function. On the other hand, usings60d one can
rewrite this expression as

kE2lk1
~ u−ns2−hd, s62d

and, taking into accounts58d

u−g , u−ns2−hd, s63d

from which finally we obtain the equality

g = ns2 − hd. s64d

The last equality is known as Fisher’s equality and gives the
last critical exponent,h=1.

VI. RELATION WITH OTHER UNIVERSALITY CLASSES

The correlation functions56d looks rather counterintui-
tive, since atum.0 sdamping wavesd, one haskE2lkm

,0,
and the noise isimaginary. Nevertheless, this unusual situa-
tion has an analog—for particle-particle annihilation reac-
tions of the typeY+Y→0 scorresponds to equationdn/dt=
−an2,a.0d, Y→0 sdn/dt=−and the correlation function is
also negative because ofanticorrelationof particlesf33g. In
the caseum.0 the amplitudeAm→0 as t→0. It is also
shown that the criticality due to these annihilation processes
belongs to a certain universality class which is different from
the Ising universality classf33,34g and therefore is not de-
scribed by the Landau-Ginzburg Hamiltonians36d.

Another unusual quantity is the correlation lengthj and
the wave vectorkj=j−1, whose use allows us to establish the
validity of Fisher’s equality for the collisionless system,
studied here. It is not related to the size of the systemL but
to thefluctuationsin the system which determine an average
path of correlated motion of particle in presence of these
fluctuations. As the system approaches the threshold, fluctua-
tions become correlated since the characteristic time of cor-
relationsv−1,u−1 diverges asu→0. This behavior is analo-

gous to thermodynamic systems where the correlation length
is the only relevant scale near the critical point ase→0.

To demonstrate that the criticality in the Vlasov-Poisson
system belongs to a different class, let us compare the critical
exponents corresponding to the Jeans instability in a self-
gravitatinghydrodynamicalsystemf30g, using the same ap-
proach. The dispersion relation for this system is

vm
2 = cs

2km
2 − 4pGr0, s65d

or

vm
2 = scs

2 − cm
2 dkm

2 , s66d

wherecm
2 =4pGr /km

2 is the critical velocity of sound, corre-
sponding tovm

2 =0. As for the kinetic case ifc2.c1
2=ccr

2 ,
there are no unstable modes, and the correlation length is

jh =
2pcs

v1
,

1

k1
u f

−1/2, s67d

where u f =scs
2−ccr

2 d /ccr
2 is the reduced sound velocity in a

fluid. Here, we have the mean-field exponentn f =1/2.
Assumingm=1 and dividing both sides of the dispersion

relations66d by cs
2, one can obtain the correlation function as

Gh
s2dskjh

,u fd = Skjh

2

k1
2 − u fD−1

. s68d

This is the propagator of Euclidean theory or of the scalar
boson fieldf13g, from which the Landau mean-field theory
follows automatically.

On the other hand, dispersion relations25d for the colli-
sionless case gives

Gs2dskj,ud = SiÎ 2

p

kj

k1
− uD−1

. s69d

For collisionless systems the propagator thus corresponds to
the vectorfermionic field and describes adifferent class of
critical phenomena. In the language of quantum field theory
the parametersu f andu arebare masses. Since

Gs2dsk,0d ~
1

k2−h , s70d

from s68d and s69d one can obtainh=0 for the case of hy-
drodynamics andh=1 for collisionless system.

VII. HYPERSCALING LAWS

The approach assumed in the previous section allows us
to establish the hyperscaling law for the Vlasov-Poisson sys-
tem which involves the dimensionalityd along with critical
exponents like Josephson’s laws8d. Using propagators69d,
which is the potential energy, the specific heat capacityC in
d-dimensional space atu→0 can be obtained as

C ,
]

]u
E ddkjG

s2dskj,ud, s71d

which gives

C ~ j2−d. s72d

With relation s60d and s72d becomes
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C ~ u−ns2−dd. s73d

Taking into account the scaling laws51d for the specific heat
capacityC, one can obtain the hyperscaling relation which
inter-relates the exponentsa, n, and the dimensionalityd

a = ns2 − dd. s74d

The last equality revealsd=2 as theupper critical dimen-
sionality for the Vlasov-Poisson system since the heat capac-
ity becomes divergent ifd,2, thus indicating the impor-
tance of fluctuations in the critical area. It also shows that the
dimensionality corresponding to the critical exponentsa=
−3 andn=1 is d=5, fluctuations atu<0 are insignificant,
and thereforea=−3, b=2, g=1, n=1, and h=1 are the
mean-field exponents.

The use of the scalar field propagators68d instead ofs69d
gives

a = ns4 − dd, s75d

and ata=0 the upper critical dimensionality isdc=4, which
is the Landau mean-field theory case for the Ising universal-
ity class. However, relations75d is not valid for the Vlasov-
Poisson system because of its different propagator. On the
contrary to relationss74d and s75d which are valid for spe-
cific propagatorss68d and s69d, Josephson’s laws8d is uni-
versal for all cases considered. With exponentsn=1 andn f
=1/2 it gives dc=2 anddc=4 as the upper critical dimen-
sionalities for the collisionless and hydrodynamic cases, re-
spectively, andd=5 for the exponents of the Vlasov-Poisson
system calculated here. Without going into details here, we
note that this universality appears because the fundamental
description is given by the same functional integrals in both
cases. In particular, for the free-scalar bosonic fieldsno in-
teractionsd the partition function is

ZG =E Df expF−E ddxH0G ,

where H0 is the Landau-Ginzburg HamiltonianHLG s36d
without the quadratic term. In the fermionic case the La-
grangian for a Dirac spinor field is used instead ofH0.

VIII. CONCLUSIONS

We have studied numerically and analytically a model
Vlasov-Poisson system near the point of a marginal stability.
The most important finding is that the criticality of the
Vlasov-Poisson model studied here belongs to a universality
class described by the propagator corresponding to afermi-
onic vectorfield. This finding is in striking contrast with the
previous critical phenomena studies concerning systems
whose criticality belongs to universality classes correspond-
ing to the scalarbosonicfields, like the Ising universality
class.

This fundamental discrepancy emerges from thequalita-
tive difference between objects considered: the Landau-
Ginzburg Hamiltonians36d takes into account spatial varia-
tions of the order parameter via the local differential operator
¹, whereas the integro-differential operator for the Vlasov-

Poisson model acts on the distribution function containing
the additional dimension of velocity.

We have calculated numerically the critical exponents
which describe the critical state of the model, and established
analytically that these exponents and the dimensionality are
inter-related by the scaling and hyperscaling laws like the
Widom, Rushbrooke, and Josephson laws at the formal di-
mensionalityd=5. The upper critical dimensionality isdc
=2 and, sinced.dc, the calculated exponents are the mean-
field exponents, different from those which one might expect
with the Landau-Weiss set of critical exponents correspond-
ing to the Ising mean-field model wheredc=4. This is related
to the higher dimensionality of the Vlasov-Poisson kinetic
problem associated with the velocity space and to the type of
the criticality of the Vlasov-Poisson systems, which belongs
to a universality classdifferent from the Ising universality
class.

The critical exponents we have found here area=−3, b
=2, g=1, d=1.5,n=1, andh=1. The difference between this
set and the seta<−2.814, b<1.907, g<1, d<1.544, n
=1, andh=1 f19g is becauseAsat is about 50 times larger for
the latter case, thus causingwave-waveinteractions to domi-
nate, thereby yielding a different universality class. More
important, the later exponents satisfy scaling laws atfractal
dimensiond<4.68, indicatingreduceddimensionality be-
cause wave-wave interactions have fewer degrees of freedom
than wave-particle onesf21g.
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APPENDIX A: RELATION BETWEEN THE SCALING
AND CRITICAL EXPONENTS

From the homogeneity conditions47d

fmslatt,lavv,lauu,laF1F1d = lfmst,v,u,F1d, sA1d

for rm components by integration overv, one has

l−avrmslatt,lauu,laF1F1d = lrmst,u,F1d. sA2d

For any twoAsat=r1stsatd andAsat8 =r1stsat8 d, one can write

l−avAsatslauu,laF1F1d = lAsatsu,F1d. sA3d

Assumingl=s−1/ud1/au, the critical exponentb can be
rewritten in terms of the scaling exponentsav andau as

b =
1 + av

au

. sA4d

In the similar way forg andd, one can write

g =
− av − 1 +aF1

au

, sA5d

d =
aF1

1 + av
, sA6d

and the Widom relation follows fromsA5d straightforwardly
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g =
− av − 1 +aF1

au

= −
1 + av

au

+
aF1

au

= − b + bd = bsd − 1d.

sA7d

EquationssA4d–sA6d can be rewritten in matrix form as

WA = X , sA8d

whereA =fau ,av ,aF1
gT, X =f1,−1,−dgT, and the matrixW is

W = 1b − 1 0

g 1 − 1

0 d − 1
2 . sA9d

The determinant ofW is

detW = − b + db − g ; 0. sA10d

Using sA6d to eliminateav, the systemsA8d can be re-
duced to

bau −
1

d
aF1

= 0, sA11d

gau + S1

d
− 1DaF1

= 0, sA12d

for which solution exists only if the Widom equalityg
=bsd−1d holds. Therefore,au andaF1

can be formally con-
sidered as the eigenvectors ofW whose eigenvalue isl=0.
In particular

au =
1

b + g
aF1

, sA13d

which indicates that rescaling of the distribution function
under an external pump is equivalent to rescaling due to the
field which appears for nonzero order parameter.

APPENDIX B: RUSHBROOKE’S LAW
FOR VLASOV-POISSON SYSTEM

The heat capacity can be formally defined as

C =
dQ

du
;

dV

du
, sB1d

whereV is the potential energy of the system. To calculate
the specific heat capacity,Vsat corresponding toAsat is used.

Because perturbationsm.1 are negligible foruuu!1,
Vsat~AsatFsat, whereFsat=−Asat, and

Vsat~ Asat
2 . sB2d

From sA3d one can obtain

]

]u
l−2avAsat

2 slauu,laF1F1d =
]

]u
l2Asat

2 su,F1d, sB3d

or

]

]u
l−2av−2Asat

2 slauu,laF1F1d =
]

]u
Asat

2 su,F1d. sB4d

Assumingl=u−1/au andF1=0, Eq.sB4d can be rewritten
as

]

]u
fus2av+2d/auAsat

2 s− 1,0dg =
]

]u
Asat

2 su,0d, sB5d

or

2av + 2

au

Asat
2 s− 1,0dus2av+2d/au−1 =

]

]u
Asat

2 su,0d, sB6d

or

2av + 2

au

Asat
2 s− 1,0dufs2av+2d/aug−1 = Csu,0d. sB7d

EquationsB5d has the form of the power law,Csu ,0d~u−a,
with

a = − 2
av + 1

au

+ 1 = − 2b + 1. sB8d

The last relation corresponds to Rushbrooke’s equalitya
+2b+g=2 at g=1.
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